
1 General vector spaces

Definition 1. Let V be an arbitrary nonempty set of objects on which two operations
are defined: addition, and multiplication by numbers called scalars. By addition we
mean a rule for associating with each pair of objects u and v in V an object u + v,
called the sum of u and v; by scalar multiplication we mean a rule for associating
with each scalar k and each object u ∈ V an object ku, called the scalar multiple of
u by k. If the following axioms are satisfied by all objects u, v, w ∈ V and all scalars
k,m, then we call V a vector space and we call the objects in V vectors.

(1) If u and v are objects inV , then u + v ∈ V . (closed under vector addition)

(2) u + v = v + u.

(3) u + (v + w) = (u + v) + w.

(4) There is an object ~0 ∈ V , called a zero vector for V , such that u+~0 = ~0+u = u
for all u ∈ V .

(5) For each u in V , there is an object −u in V , called a negative of u, such that
u + (−u) = (−u) + u = ~0.

(6) If k is any scalar and u is any object in V , then ku is in V . (closed under scalar
multiplication)

(7) k(u + v) = ku + kv.

(8) (k + m)u = ku + mu.

(9) k(mu) = (km)(u).

(10) 1u = u.

Example 2. The set V = Rn can be naturally made into a vector space with the
usual operations:

u + v = (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

kv = k(x1, . . . , xn) = (kx1, . . . , kxn).

We can check that axioms (1) to (10) are satisfied.

Example 3. Consider the set V of all m×n matrices with the usual matrix operations
of addition and scalar multiplication. These operations satisfy the actions of vector
spaces and we have another example of vector spaces, denoted in this case Mm×n. On
the other hand if we restrict ourselves to invertible matrix, the zero matrix ~0 = (0) is
not containing in the set and we do not have a vector space.
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Example 4. Let V be the set of real-valued functions that are defined at each x ∈
R = (−∞,∞). If f = f(x) and g = g(x) are two functions in V and if k is any scalar,
then define the operations of addition and scalar multiplication by

(f + g)(x) = f(x) + g(x) (kf)(x) = kf(x).

The vector space defined this way is denoted F (−∞,∞).

Example 5. The set S of all pairs of real numbers of the form (x, y) ∈ R2, where
x ≥ 0, with the standard operations on each component is not a vector space. The
reason is failure of axiom (5). For example, the element v = (3,−4) ∈ S, but the
−v = (−3,−4) /∈ S, since x < 0.

Example 6. The sphere of radius R in R3 is given by

S = {(x, y, z) ∈ R3 |x2 + y2 + z2 ≤ R2}.

It is not a vector space for the usual operations in R3 for several reasons. It is not
closed under vector’s addition and is also not closed under scalar multiplication.

Example 7. The subset of R3 given by

S = {(x, y, z) ∈ R3 |x = y = z}.

It is a vector space for the usual operations in R3. You can check that it satisfies the
axioms.

Example 8. In general the solution set of a system of homogeneous linear equations
in n variables, 

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

...

ai1x1 + ai2x2 + · · ·+ ainxn = 0

...

am1x1 + am2x2 + · · ·+ amnxn = 0

is a vector space inside the vector space Rn. For example:{
4w + 3x + y − z = 0

−3w + x− 2y + z = 0

is a real vector space. In this case, a vector space in R4.

Proposition 9. Let V a vector space and v ∈ V a vector. Then we have
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(a) 0v = ~0.

(b) (−1)v = −v.

Proof. For part (i), using (8) (k+m)u = ku+mu⇒ (0+0)u = 0u+0u⇒ 0u = 0u+0u.
Adding −0u to both sides of the equation, we get ~0 = 0u +~0 = 0u.
(ii) (−1)v + v = (−1)v + 1v = (−1 + 1)v = 0v = ~0. Hence (−1)v = −v.

Definition 10. A subset W of a vector space V is called a subspace of V if W is
itself a vector space under the addition and scalar multiplication defined on V .

Example 11. As observed before, the solution set W of a system of homogeneous
linear equations in n variables,

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

...

ai1x1 + ai2x2 + · · ·+ ainxn = 0

...

am1x1 + am2x2 + · · ·+ amnxn = 0

is a vector space inside the vector space V = Rn. We can observe that: The sum of
two vectors in W is still in W and the multiplication of a vector in W by a scalar k
is still a vector kw ∈ W . The fact that the system is homogeneous is crucial for this
second property, since the solution to any system of equations (linear variety) will be
closed under addition.

Proposition 12. If W is a set of one or more vectors in a vector space V ,then W
is a subspace of V if and only if the following conditions are satisfied.
(a) If u, v are vectors in W , then u + v ∈ W .
(b) If k is a scalar and v is a vector in W , then kv is also a vector in W .

Proof. The axioms of vector space for W gives in particular properties (a) and (b).
On the other hand if we have the axioms of vector space for V and properties (a) and
(b), the only thing left to prove is that:
(4) The zero vector is in W : By (b) 0w = ~0 ∈ W , for any w ∈ W .
(5) The opposite of a vector in W is also in W : Also by (b) (−1)w = −w ∈ W for
any w ∈ W .

Example 13. Differentiable functions on (a, b) are a subspace of the vector space
F (a, b) of functions f : (a, b) −→ R.

Example 14. Symmetric matrices are a subspace in the vector space of square ma-
trices Mn(R).
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Example 15. Polynomial functions is a subspace of the vector space of F (−∞,∞).
In particular, we have the subspace Pn of polynomials of degree at most n.

Definition 16. If w is a vector in a vector space V , then w is said to be a linear
combination of the vectors v1, v2, . . . , vr ∈ V if w can be expressed in the form

w = k1v1 + k2v2 + · · ·+ krvr,

where k1, k2, . . . , k3 are scalars. These scalars are called the coefficients of the linear
combination.

Theorem 17. If S = {w1, w2, ..., wr} is a nonempty set of vectors in a vector space
V , then:

(a) The set W of all possible linear combinations of the vectors in S is a subspace
of V

(b) The set W in part (a) is the “smallest” subspace of V that contains all of the
vectors in S in the sense that any other subspace that contains those vectors
contains also W .

Proof. We should prove that W is closed under addition and scalar multiplication.
For example for addition, take two elements w,w′ ∈ W , then the sum

w + w′ = k1v1 + k2v2 + · · ·+ krvr + k′1v1 + k′2v2 + · · ·+ k′rvr

= (k1 + k′1)v1 + (k2 + k′2)v2 + · · ·+ (kr + k′r)vr,

will also be an element of W . In a similar way, we can do closed by scalar multipli-
cation.

Definition 18. If S = {w1, w2, . . . , wr} is a nonempty set of vectors in a vector space
V , then the subspace W of V that consists of all possible linear combinations of the
vectors in S is called the subspace of V generated by S, and we say that the vectors
w1, w2, . . . , wr span W . We denote this subspace as W = span{w1, w2, . . . , wr} or
W = span(S).

Example 19. The vectors subspace Pn of polynomials of degree at most n is exactly
the vector subspace Pn = span{1, x, . . . , xn} spanned or generated by the polynomials
1, x, x2, . . . , xn.

Remark 20. Suppose that w1 = (a1,1, . . . a1,n), . . . , wr = (a1,r, . . . an,r) are vec-
tors in Rn. In order to determine whether or not a vector b = (b1, . . . , br) is in
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span{w1, w2, . . . , wr}, we need to solve the linear system of equations:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2nxn = b2
...

ai,1x1 + ai,2x2 + · · ·+ ai,nxn = bi
...

ar,1x1 + ar,2x2 + · · ·+ ar,nxn = br.

Definition 21. If S = {v1, v2, . . . vr} is a set of two or more vectors in a vector space
V , then S is said to be a linearly independent set if no vector in S can be expressed
as a linear combination of the others. A set that is not linearly independent is said
to be linearly dependent.

Theorem 22. A nonempty set S = {v1, v2, . . . vr} in a vector space V is linearly
independent if and only if the only coefficients satisfying the vector equation

k1v1 + k2v2 + · · ·+ krvr = 0

are k1 = 0, k2 = 0, . . . , kr = 0.

Proof. If the vectors in S = {v1, v2, . . . vr} are linearly dependent, then there exist a
vi = k1v1 + · · · + kvvr. The linear combination −vi + k1v1 + · · · + kvvr = 0 and not
all coefficients are zero. On the other hand if k1v1 + k2v2 + · · · + krvr = 0 and there
is ki 6= 0, then vi = k1/kiv1 + . . . kr/kivr is a linear combination of the other vectors
and the vectors in S are linearly dependent.

Remark 23. Suppose that w1 = (a1,1, . . . a1,n), . . . , wr = (a1,r, . . . an,r) are vectors in
Rn. The vectors in the set S = {w1, w2, . . . , wr} are linearly independent if and only
if the homogeneous system of equations:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = 0

a2,1x1 + a2,2x2 + · · ·+ a2nxn = 0

...

ai,1x1 + ai,2x2 + · · ·+ ai,nxn = 0

...

ar,1x1 + ar,2x2 + · · ·+ ar,nxn = 0,

has a unique solution (x1, x2, . . . , xn) = (0, 0, . . . , 0) ∈ Rn. In the special case of
r = n, this is equivalent to show that the determinant det(A) of the matrix A of the
system satisfies det(A) 6= 0.
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Theorem 24. Let S = {v1, v2, . . . vr} be a set of vectors in Rn . If r > n then vectors
in S are linearly dependent.

Proof. To check whether or not the vectors are linearly dependent we end up with
a homogeneous system of n equations in the r unknowns k1, . . . , kr. Since r > n, it
follows that the system has nontrivial solutions.

Definition 25. If S = {v1, v2, . . . , vn} is a set of vectors in a finite-dimensional vector
space V , then S is called a basis for V if:

(a) S span V .

(b) S is linearly independent.

The dimension of V is the number of vectors in a basis for V .

Theorem 26. (Uniqueness of Basis Representation) If S = {v1, v2, . . . , vn} is a basis
for a vector space V , then every vector v in V can be expressed in the form

v = c1v1 + c2v2 + · · ·+ cnvn

in exactly one way. The scalars c1, c2, . . . , cn are called the coordinates of v relative
to the basis S.

Theorem 27. Let V be an n-dimensional vector space, and let {v1, v2, . . . , vn} be any
basis. Then:
(a) If a set in V has more than n vectors, then it is linearly dependent.
(b) If a set in V has fewer than n vectors, then it does not span V .

If we change the basis for a vector space V from an old basis B = {u1, u2, . . . , un}
to a new basis B′ = {u′1, u′2, . . . , u′n}, then for each vector v ∈ V , the old coordinate
vector [v]B is related to the new coordinate vector [v]B′ by the equation

[v]B = P [v]B′ ,

where the columns of P are the coordinate vectors of the new basis vectors relative
to the old basis; that is, the column vectors of P are {[u′1]B, [u′2]B, ..., [u′n]B}.
Definition 28. If A is an m × n matrix, then the subspace of Rn spanned by the
row vectors of A is called the row space of A, and the subspace of Rm spanned by
the column vectors of A is called the column space of A. The solution space of the
homogeneous system of equations Ax = 0, which is a subspace of Rn, is called the
null space of A.

Theorem 29. If a matrix R is in row echelon form, then the row vectors with the
leading 1’s (the nonzero row vectors) form a basis for the row space of R, and the
column vectors with the leading 1’s form a basis for the column space of R.

Definition 30. The column space and the row space have the same dimension. The
common dimension of the row space and column space of a matrix A is called the
rank of A and is denoted by rank(A); the dimension of the null space of A is called
the nullity of A and is denoted by nullity(A).
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